Affiliation:
1. Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242
Abstract
AbstractThe pathways involved in activation of the ERK1/2 cascade in Leydig cells were examined in MA-10 cells expressing the recombinant human LH receptor (hLHR) and in primary cultures of rat Leydig cell precursors. In MA-10 cells expressing the recombinant hLHR, human choriogonadotropin-induced activation of ERK1/2 is effectively inhibited by overexpression of a cAMP phosphodiesterase (a manipulation that blunts the human choriogonadotropin-induced cAMP response), by addition of H89 (a selective inhibitor of protein kinase A), or by overexpression of the heat-stable protein kinase A inhibitor, but not by overexpression of an inactive mutant of this inhibitor. Stimulation of hLHR did not activate Rap1, but activated Ras in an H89-sensitive fashion. Addition of H89 to MA-10 cells that had been cotransfected with a guanosine triphosphatase-deficient mutant of Ras almost completely inhibited the hLHR-mediated activation of ERK1/2. We also show that 8-bromo-cAMP activates Ras and ERK1/2 in MA-10 cells and in primary cultures of rat Leydig cells precursors in an H89-sensitive fashion, whereas a cAMP analog 8-(4-chloro-phenylthio)-2′-O-methyl-cAMP (8CPT-2Me-cAMP) that is selective for cAMP-dependent guanine nucleotide exchange factor has no effect. Collectively, our results show that the hLHR-induced phosphorylation of ERK1/2 in Leydig cells is mediated by a protein kinase A-dependent activation of Ras.
Subject
Endocrinology,Molecular Biology,General Medicine
Cited by
83 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献