Abstract
We prove the existence of critical points of vortex type Hamiltonians
\[
H(p_1,\ldots, p_N)
= \sum_{{i,j=1}\atop{i\ne j}}
^N \Gamma_i\Gamma_jG(p_i,p_j)+\Psi(p_1,\dots,p_N)
\]
on a closed Riemannian surface $(\Sigma,g)$ which is not homeomorphic to the sphere
or the projective plane. Here $G$ denotes the Green function of the Laplace-Beltrami
operator in $\Sigma$, $\Psi\colon \Sigma^N\to\mathbb{R}$ may be any function of class ${\mathcal C}^1$,
and $\Gamma_1,\dots,\Gamma_N\in\mathbb{R}\setminus\{0\}$ are the vorticities.
The Kirchhoff-Routh Hamiltonian from fluid dynamics corresponds to
$\Psi(p) = -\sum\limits_{i=1}^N \Gamma_i^2h(p_i,p_i)$ where
$h\colon \Sigma\times\Sigma\to\mathbb{R}$ is the regular part of the Laplace-Beltrami operator.
We obtain critical points $p=(p_1,\dots,p_N)$ for arbitrary $N$ and vorticities
$(\Gamma_1,\dots,\Gamma_N)$ in $\mathbb{R}^N\setminus V$ where $V$ is an explicitly given algebraic variety of codimension 1.
Publisher
Uniwersytet Mikolaja Kopernika/Nicolaus Copernicus University
Subject
Applied Mathematics,Analysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献