The Morse Property of Limit Functions Appearing in Mean Field Equations on Surfaces with Boundary

Author:

Hu Zhengni,Bartsch ThomasORCID

Abstract

AbstractIn this paper, we study the Morse property for functions related to limit functions of mean field equations on a smooth, compact surface $$\Sigma $$ Σ with boundary $$\partial \Sigma $$ Σ . Given a Riemannian metric g on $$\Sigma $$ Σ we consider functions of the form "Equation missing"where $$\sigma _i \ne 0$$ σ i 0 for $$i=1,\ldots ,m$$ i = 1 , , m , $$G^g$$ G g is the Green function of the Laplace-Beltrami operator on $$(\Sigma ,g)$$ ( Σ , g ) with Neumann boundary conditions, $$R^g$$ R g is the corresponding Robin function, and $$h \in {{\mathcal {C}}}^{2}(\Sigma ^m,\mathbb {R})$$ h C 2 ( Σ m , R ) is arbitrary. We prove that for any Riemannian metric g, there exists a metric $$\widetilde{g}$$ g ~ which is arbitrarily close to g and in the conformal class of g such that $$f_{\widetilde{g}}$$ f g ~ is a Morse function. Furthermore we show that, if all $$\sigma _i>0$$ σ i > 0 , then the set of Riemannian metrics for which $$f_g$$ f g is a Morse function is open and dense in the set of all Riemannian metrics.

Funder

China Scholarship Council

Justus-Liebig-Universität Gießen

Publisher

Springer Science and Business Media LLC

Reference16 articles.

1. Ahmedou, M., Bartsch, T., Fiernkranz, T.: Equilibria of vortex type Hamiltonians on closed surfaces. Topol. Methods Nonlinear Anal. 61(1), 239–256 (2023)

2. Baraket, S., Pacard, F.: Construction of singular limits for a semilinear elliptic equation in dimension 2. Calc. Var. Partial Differ. Equ. 6(1), 1–38 (1997)

3. Bartsch, T., Micheletti, A.M., Pistoia, A.: The Morse property for functions of Kirchhoff-Routh path type. Discrete Contin. Dyn. Syst. 7, 1867–1877 (2019)

4. Chern, S.-S.: An elementary proof of the existence of isothermal parameters on a surface. Proc. Am. Math. Soc. 6, 771–782 (1955)

5. del Pino, M., Kowalczyk, M., Musso, M.: Singular limits in Liouville-type equations. Calc. Var. Partial Differ. Equ. 24(1), 47–81 (2005)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3