Abstract
AbstractIn this paper, we study the Morse property for functions related to limit functions of mean field equations on a smooth, compact surface $$\Sigma $$
Σ
with boundary $$\partial \Sigma $$
∂
Σ
. Given a Riemannian metric g on $$\Sigma $$
Σ
we consider functions of the form
"Equation missing"where $$\sigma _i \ne 0$$
σ
i
≠
0
for $$i=1,\ldots ,m$$
i
=
1
,
…
,
m
, $$G^g$$
G
g
is the Green function of the Laplace-Beltrami operator on $$(\Sigma ,g)$$
(
Σ
,
g
)
with Neumann boundary conditions, $$R^g$$
R
g
is the corresponding Robin function, and $$h \in {{\mathcal {C}}}^{2}(\Sigma ^m,\mathbb {R})$$
h
∈
C
2
(
Σ
m
,
R
)
is arbitrary. We prove that for any Riemannian metric g, there exists a metric $$\widetilde{g}$$
g
~
which is arbitrarily close to g and in the conformal class of g such that $$f_{\widetilde{g}}$$
f
g
~
is a Morse function. Furthermore we show that, if all $$\sigma _i>0$$
σ
i
>
0
, then the set of Riemannian metrics for which $$f_g$$
f
g
is a Morse function is open and dense in the set of all Riemannian metrics.
Funder
China Scholarship Council
Justus-Liebig-Universität Gießen
Publisher
Springer Science and Business Media LLC
Reference16 articles.
1. Ahmedou, M., Bartsch, T., Fiernkranz, T.: Equilibria of vortex type Hamiltonians on closed surfaces. Topol. Methods Nonlinear Anal. 61(1), 239–256 (2023)
2. Baraket, S., Pacard, F.: Construction of singular limits for a semilinear elliptic equation in dimension 2. Calc. Var. Partial Differ. Equ. 6(1), 1–38 (1997)
3. Bartsch, T., Micheletti, A.M., Pistoia, A.: The Morse property for functions of Kirchhoff-Routh path type. Discrete Contin. Dyn. Syst. 7, 1867–1877 (2019)
4. Chern, S.-S.: An elementary proof of the existence of isothermal parameters on a surface. Proc. Am. Math. Soc. 6, 771–782 (1955)
5. del Pino, M., Kowalczyk, M., Musso, M.: Singular limits in Liouville-type equations. Calc. Var. Partial Differ. Equ. 24(1), 47–81 (2005)