Abstract
Recently, cases of large-scale fires, such as those at Jecheon Sports Center in 2017 and Miryang Sejong Hospital in 2018, have been increasing. We require more advanced techniques than the existing approaches to better detect fires and avoid these situations. In this study, a procedure for the detection of fire in a region of interest in an image is presented using image pre-processing and the application of a convolutional neural network based on deep-learning. Data training based on the haze dataset is included in the process so that the generation of indoor haze smoke, which is difficult to recognize using conventional methods, is also detected along with flames and smoke. The results indicated that fires in images can be identified with an accuracy of 92.3% and a precision of 93.5%.
Publisher
Korean Society of Hazard Mitigation
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献