A Study on Flame and Smoke Detection Algorithm Using Convolutional Neural Network Based on Deep Learning

Author:

Ryu Jinkyu,Kwak Dongkurl

Abstract

Recently, cases of large-scale fires, such as those at Jecheon Sports Center in 2017 and Miryang Sejong Hospital in 2018, have been increasing. We require more advanced techniques than the existing approaches to better detect fires and avoid these situations. In this study, a procedure for the detection of fire in a region of interest in an image is presented using image pre-processing and the application of a convolutional neural network based on deep-learning. Data training based on the haze dataset is included in the process so that the generation of indoor haze smoke, which is difficult to recognize using conventional methods, is also detected along with flames and smoke. The results indicated that fires in images can be identified with an accuracy of 92.3% and a precision of 93.5%.

Publisher

Korean Society of Hazard Mitigation

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Forest Fire Warning System Capable of Real-Time Detection based on Artificial Intelligence;The Journal of Korean Institute of Information Technology;2023-03-31

2. Fire Image Classification Based on Convolutional Neural Network for Smart Fire Detection;International Journal of Fire Science and Engineering;2022-09-30

3. Study on Consecutive Interpretation Automatic Scoring Model Based on Neural Network Algorithm;2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC);2022-04-14

4. Study on Extinguishing Limits of Liquid Fuel Flames in Confined Spaces;Journal of the Korean Society of Hazard Mitigation;2022-02-28

5. Application of Deterministic Method for Landslide Susceptibility with Deep Learning;Journal of the Korean Society of Hazard Mitigation;2021-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3