Application of Deterministic Method for Landslide Susceptibility with Deep Learning

Author:

Min Dae-Hong,Yoon Hyung-Koo

Abstract

A method for estimating landslide susceptibility based on the analytic hierarchy process (AHP) was developed in 2017 as a deterministic method. The objective of this study is to verify the reliability of the proposed method by applying deep learning to improve the applicability of the method. The AHP-based deterministic method comprises eight factors: fines content, soil thickness, porosity, elastic modulus, shear strength, hydraulic conductivity, saturation, and water content. After dividing the testing area into 1 m square grids, eight factors were derived through field and laboratory experiments. The factor of safety was calculated based on the Mohr-Coulomb failure theory. Finally, the input and output values of deep learning were obtained. Bayesian regularization was applied among gradient descents to improve the learning efficiency when applying machine learning. The actual and predicted factors of safety were compared, and they showed excellent reliability in both the training and test phases. This study demonstrates that the AHP-based deterministic method with deep learning is valuable for determining landslide risk areas.

Funder

Ministry of Trade, Industry and Energy

Korea Energy Technology Evaluation and Planning

Publisher

Korean Society of Hazard Mitigation

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3