Proposal on Hybrid Design Method of Outer Port Facilities Using Failure Probability

Author:

Cho Yong Jun

Abstract

Lately, many efforts have been made to address the problem concerned with deterministic design using reliability-based design, and the research results are significant. However, there is considerable confusion in the design practice regarding how to use failure probability, the main output of reliability-based design. In this rationale, this study aims to develop a robust hybrid deterministic design method for outer port facilities using the failure probability. To this end, we first reviewed the design process of Eulleungdo East Breakwater, some of which were recently damaged. It was revealed that the exceeding probability of design wave height of 5.2 m was merely 0.65, which corresponds to a return period of 1.53 years, showing that the outer port facilities of Ulleungdo were considerably underdesigned. In an effort to find an alternative that can overcome the limitations of the deterministic design method, which is highly likely to involve subjective judgment, a Level III reliability design was carried out. In doing so, tri-modal Gaussian wave slope distribution was used as a probabilistic model for wave slope. Numerical results show that failure probability was excessively estimated in the Gaussian distribution, and even if the TTP size was slightly reduced, the failure probability increased rapidly. Although failure probability is sensitive to the change in nominal diameter, there is a gradually increasing zone where the failure probability change rapidly decreases when the nominal diameter is larger than the critical value. The presence of a Gradually Increasing Zone mentioned above implies that it is uneconomical and has no physical background to adjust the nominal diameter to be larger than the critical value. Therefore, it can be easily conceived that outer port facility design should be performed using a failure probability provided by Level III reliability-based design.

Publisher

Korea Society of Coastal Disaster Prevention

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3