Drivers’ Evaluation of Different Automated Driving Styles: Is It both Comfortable and Natural?

Author:

Peng ChenORCID,Merat Natasha,Romano RichardORCID,Hajiseyedjavadi ForooghORCID,Paschalidis Evangelos,Wei Chongfeng,Radhakrishnan Vishnu,Solernou Albert,Forster Deborah,Boer Ewrin

Abstract

Objective: This study investigated users’ subjective evaluation of three highly automated driving styles, in terms of comfort and naturalness, when negotiating a UK road in a high-fidelity, motion-based, driving simulator. Background: Comfort and naturalness are thought to play an important role in contributing to users’ acceptance and trust of automated vehicles (AVs), although not much is understood about the types of driving style which are considered comfortable or natural. Method: A driving simulator study, simulating roads with different road geometries and speed limits, was conducted. Twenty-four participants experienced three highly automated driving styles, two of which were recordings from human drivers, and the other was based on a machine learning (ML) algorithm, termed Defensive, Aggressive, and Turner respectively. Participants evaluated comfort or naturalness of each driving style, for each road segment, and completed a Sensation Seeking (SS) questionnaire, which assessed their risk-taking propensity. Results: Participants regarded human-like driving styles as more comfortable and natural, compared with the less human-like, ML-based, driving controller. However, between the two human-like controllers, only the Defensive style was considered comfortable, especially for the more challenging road environments. Differences in preference for controller by driver trait were also observed, with the Aggressive driving style evaluated as more natural by the high sensation seekers. Conclusion: Participants were able to distinguish between human- and machine-like AV controllers. A range of psychological concepts must be considered for the subjective evaluation of controllers. Application: Knowing how different driver groups evaluate automated vehicle controllers is important to design more acceptable systems in the future.

Publisher

Center for Open Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3