Detection of Hazelnut in Foods Using ELISA: Challenges Related to the Detectability in Processed Foodstuffs

Author:

Cucu Tatiana1,Devreese Bart2,Trashin Stanislav3,Kerkaert Barbara3,Rogge Maarten3,De Meulenaer Bruno3

Affiliation:

1. Ghent University, Department of Food Safety and Food Quality, Research Group on Food Chemistry and Human Nutrition, Coupure Links 653 B-9000 Gent, Belgium Ghent University, Laboratory for Protein Biochemistry and Biomolecular Engineering, KL Ledeganckstraat 35 B-9000 Gent, Belgium

2. Ghent University, Laboratory for Protein Biochemistry and Biomolecular Engineering, KL Ledeganckstraat 35 B-9000 Gent, Belgium

3. Ghent University, Department of Food Safety and Food Quality, Research Group on Food Chemistry and Human Nutrition, Coupure Links 653 B-9000 Gent, Belgium

Abstract

Abstract Hazelnuts are widely used nowadays, and can pose a serious threat to allergic consumers due to cross-contamination that may occur during processing. This might lead to the presence of hidden hazelnut in foods. Therefore, reliable tests are needed to detect hazelnut, especially in processed foods. A hazelnut-specific indirect competitive ELISA based on polyclonal chicken antibodies was developed. The polyclonal antibodies were raised against modified hazelnut proteins in order to improve the detectability of hazelnut proteins in processed foods. The assay showed a detection limit of 1.36 μg hazelnut protein/mL of 5 mM urea in phosphate-buffered saline buffer (pH 7.4). Limited cross-reactivity with walnut and pecan nut was observed; no cross-reactivity was observed with other food ingredients. Blank cookies spiked before analysis showed recoveries of 73–107%. However, cookies spiked before baking showed that the detectability was severely decreased. Addition of lactose to the cookies, which led to more severe modification through the Maillard reaction, led to an increase in the detectability. These results indicate that using antibodies developed toward allergens modified through food processing-simulating reactions is a better approach for detection.

Publisher

Oxford University Press (OUP)

Subject

Pharmacology,Agronomy and Crop Science,Environmental Chemistry,Food Science,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3