Dop-DenseNet: Densely Convolutional Neural Network-Based Gesture Recognition Using a Micro-Doppler Radar

Author:

Le Hai,Hoang Van-Phuc,Doan Van Sang,Le Dai Phong

Abstract

Hand gesture recognition is an efficient and practical solution for the non-contact human–machine interaction in smart devices. To date, vision-based methods are widely used in this research area, but they are susceptible to light conditions. To address this issue, radar-based gesture recognition using micro-Doppler signatures can be applied as an alternative. Accordingly, the use of a novel densely convolutional neural network model, Dop-DenseNet, is proposed in this paper for improving hand gesture recognition in terms of classification accuracy and latency. The model was designed with cross or skip connections in a dense architecture so that the former features, which can be lost in the forward-propagation process, can be reused. We evaluated our model with different numbers of filter channels and experimented with it using the Dop-Net dataset, with different time lengths of input data. As a result, it was found that the model with 64 3 × 3 filters and 200 time bins of micro-Doppler spectrogram data could achieve the best performance trade-off, with 99.87% classification accuracy and 3.1 ms latency. In comparison, our model remarkably outperformed the selected state-of-the-art neural networks (GoogLeNet, Res- Net-50, NasNet-Mobile, and MobileNet-V2) using the same Dop-Net dataset.

Publisher

Korean Institute of Electromagnetic Engineering and Science

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Instrumentation,Radiation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3