Improving human activity classification based on micro-doppler signatures of FMCW radar with the effect of noise

Author:

Nguyen NgocBinhORCID,Pham MinhNghiaORCID,Doan Van-Sang,Le VanNhu

Abstract

Nowadays, classifying human activities is applied in many essential fields, such as healthcare, security monitoring, and search and rescue missions. Radar sensor-based human activity classification is regarded as a superior approach in comparison to other techniques, such as visual perception-based methodologies and wearable gadgets. However, noise usually exists throughout the process of extracting raw radar signals, decreasing the quality and reliability of the extracted features. This paper presents a novel method for removing white Gaussian noise from raw radar signals using a denoising algorithm before classifying human activities using a deep convolutional neural network (DCNN). Specifically, the denoising algorithm is used as a preprocessing step to remove white Gaussian noise from the input raw radar signal. After that, a lightweight Cross-Residual Convolutional Neural Network (CRCNN) with adaptable cross-residual connections is suggested for classification. The analysis results show that the denoising algorithm with a range-bin interval of 3 and a cut-threshold value of 3 achieves the best denoising effect. When the denoising algorithm was applied to the dataset, CRCNN improved the right classification rate by up to 10% compared to the recognition results achieved with the original noise-added dataset. Additionally, a comparison of the CRCNN with the denoising algorithm solution with six cutting-edge DCNNs was conducted. The experimental results reveal that the proposed model greatly outperforms the others.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3