Durability of Disposable N95 Mask Material When Exposed to Improvised Ozone Gas Disinfection

Author:

Dennis Robert,Pourdeyhimi Behnam,Cashion Avery,Emanuel Steve,Hubbard Devin

Abstract

The principle finding of this report is that both commercial and a novel material used for N95 mask filters can endure many cycles of disinfection by ozone gas (20 ppm for 30 minutes) without detectable degradation or loss of filtration efficiency.  N95 masks and surgical masks (hereafter referred to as masks) typically use a filtration material fabricated from meltblown polypropylene.  To achieve maximum filtration efficiency while maintaining a reasonable pressure drop, these nonwoven fabrics are also electrostatically charged (corona discharge is the most common method used), to maximize attraction and capture of aerosols and solid particulates.  Under normal circumstances, the reuse of masks is generally discouraged, but in times of crisis has become a necessity, making disinfection after each use a necessity.  To be acceptable, any disinfection procedure must cause minimal degradation to the performance of the filter material.  Possible performance degradation mechanisms include mechanical damage, loss of electrostatic charge, or both.  One of the most practical and direct ways to measure combined mechanical and electrostatic integrity, and the subsequent ability to reuse mask filter material, is by the direct measurement of filtration efficiency. In this paper, we report that small numbers of disinfection cycles at reasonable virucidal doses of ozone do not significantly degrade the filtration efficiency of meltblown polypropylene filter material. By comparison, laundering quickly results in a significant loss of filtration efficiency and requires subsequent recharging to restore the electrostatic charge and filtration efficiency. A common assumption among biomedical scientists that ozone is far too destructive for this application.  However, these direct measurements show that mask materials, specifically the filtration material, can withstand dozens of ozone disinfection cycles without any measurable degradation of filtration efficiency, nor any visible discoloration or loss of fiber integrity.  The data are clear: when subjected to a virucidal dose of ozone for a much longer duration than is required for viral inactivation, there was no degradation of N95 filtration efficiency.  The specific dosages of ozone needed for ~99% viral inactivation are thought to be at least 10 ppm for up to 30 minutes based upon an extensive literature review, but to standardize our testing, we consider a dose of 20 ppm for 30 minutes to be a reasonable and conservatively high ozone disinfection cycle.  The material tested in this study withstood dosages of up to 200 ppm for 90 minutes, or alternatively 20 ppm for up to 36 hours, without detectable degradation, and further testing suggests that up to 30 or more disinfection cycles (at 20 ppm for 30 minutes) would result in less than a 5% loss of filtration efficiency. This report does not address the effect of ozone cycling on other mask components, such as elastics. 

Publisher

Cortical Metrics LLC.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3