Author:
Dennis Robert,Cashion Avery,Emanuel Steven,Hubbard Devin
Abstract
We describe direct measurements of ozone concentration achievable in small enclosed containers (plastic storage boxes) for use as improvised decontamination systems for small articles such as disposable PPE (N95 masks, nitrile gloves, etc.), clothing, mail and small packages, food, and other miscellaneous articles. The emphasis is on the reliable and sustained generation of ozone gas concentrations of sufficient concentration and duration to create an effective virucidal environment to achieve more than 95% to 99% viral inactivation, based upon the data already published in the peer-review literature on this topic.
The suggestion that ozone be used to inactivate virus is certainly not a new idea. Our objective in this report is to make clear that the necessary levels of ozone can be improvised using simple, easy-to-use, inexpensive, and widely available supplies, and that there is every theoretical and experimental reason to believe that this approach is as highly effective in viral inactivation by ozone as are the far more expensive, complex, cumbersome, and less available equivalent ozone (and other) disinfectant systems that have themselves become unavailable during times of pandemic crisis.
Using multiple types of readily available commercial ozone generators, concentration in the tested improvised enclosure is tracked over time to assess ozone charging and decay rates, and the ozone quenching effects of items placed in the box. Generator performance is compared against published ozone dosage values for virucidal and antimicrobial activity. Bubbler and box-fan-type ozone generators were found to be effective at achieving and maintaining target concentrations of 10ppm ozone or higher, whereas automotive cigarette lighter and universal serial bus type plug in “air freshener” ozone generators could not achieve the target concentrations in these experiments. Calculations and practical guidelines for assembly and effective use of an ozone box for improvised decontamination are offered.
The majority of this report is directed toward the scientific justification and rationale for this approach. The end of the document summarizes the findings and offers simplified designs for the construction and use of ozone boxes as an improvised method of disinfection.
Reference31 articles.
1. REFERENCES
2. Links to FDA, OSHA, and NIOSH resources and communications
3. https://www.fda.gov/news-events/press-announcements/fda-reminds-patients-devices-claiming-clean-disinfect-or-sanitize-cpap-machines-using-ozone-gas-or
4. https://www.fda.gov/medical-devices/safety-communications/potential-risks-associated-use-ozone-and-ultraviolet-uv-light-products-cleaning-cpap-machines-and" https://www.fda.gov/medical-devices/safety-communications/potential-risks-associated-use-ozone-and-ultraviolet-uv-light-products-cleaning-cpap-machines-and
5. https://www.cdc.gov/niosh/topics/ozone/default.html" https://www.cdc.gov/niosh/topics/ozone/default.html
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献