Applied routing problem for a fleet of delivery drones using a modified parallel genetic algorithm

Author:

Markelova Anastasia Y., ,Allahverdyan Alexander L.,Martemyanov Alexey A.,Sokolova Inga S.,Petrosian Ovanes L.,Svirkin Mikhail V., , , , ,

Abstract

More and more experts agree that in the near future, most freight traffic will be carried out using automated systems, and of them drone delivery is considered to be the most promising. Drone delivery would benefit by independence from the limitations of transport infrastructure and road conditions and would ensure cargo delivery with rapid turnaround times, as well as a significant reduction of environmental impact. The technical capabilities of unmanned aerial vehicles improve year by year, so the task of coordinating drones and effectively planning routes is relevant and in great demand. The development of such technologies will help reduce transportation costs and improve customer service through faster delivery. This article discusses the applied routing problem for a fleet of drones with limited load capacity for the delivery of heterogeneous goods with the possibility of loading in multiple warehouses from an international optimization competition. The solution includes new approach based on a mixed dimensional parallel genetic algorithm (MDPGA) for finding rational routes for delivering goods to various customers and an assignment problem to reduce the dimension depending on the number of warehouses.

Publisher

Saint Petersburg State University

Subject

Applied Mathematics,Control and Optimization,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial Intelligence Applied to Drone Control: A State of the Art;Drones;2024-07-03

2. Multi-agent Reinforcement Learning-based Adaptive Heterogeneous DAG Scheduling;ACM Transactions on Intelligent Systems and Technology;2023-10-03

3. Deep neural network based resource allocation in D2D wireless networks;Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes;2023

4. Comparison of Reinforcement Learning Based Control Algorithms for One Autonomous Driving Problem;Communications in Computer and Information Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3