Multi-agent Reinforcement Learning-based Adaptive Heterogeneous DAG Scheduling

Author:

Zhadan Anastasia1ORCID,Allahverdyan Alexander1ORCID,Kondratov Ivan1ORCID,Mikheev Vikenty1ORCID,Petrosian Ovanes2ORCID,Romanovskii Aleksei3ORCID,Kharin Vitaliy3ORCID

Affiliation:

1. Saint-Petersburg State University, Russia

2. School of Mathematics, Harbin Institute of Technology, People’s Republic of China and Faculty of Applied Mathematics and Control Processes, Saint-Petersburg State University, Russia

3. Huawei, Saint-Petersburg Research Institute, Russia

Abstract

Static scheduling of computational workflow represented by a directed acyclic graph (DAG) is an important problem in many areas of computer science. The main idea and novelty of the proposed algorithm is an adaptive heuristic or graph metric that uses a different heuristic rule at each scheduling step depending on local workflow. It is also important to note that multi-agent reinforcement learning is used to determine scheduling policy based on adaptive metrics. To prove the efficiency of the approach, a comparison with the state-of-the-art DAG scheduling algorithms is provided: DONF, CPOP, HCPT, HPS, and PETS. Based on the simulation results, the proposed algorithm shows an improvement of up to 30% on specific graph topologies and an average performance gain of 5.32%, compared to the best scheduling algorithm, DONF (suitable for large-scale scheduling), on a large number of random DAGs. Another important result is that using the proposed algorithm it was possible to cover 30.01% of the proximity interval from the best scheduling algorithm to the global optimal solution. This indicates that the idea of an adaptive metric for DAG scheduling is important and requires further research and development.

Funder

Saint-Petersburg State University

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Reference59 articles.

1. Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dan Mane Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viegas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2016. TensorFlow: Large-scale machine learning on heterogeneous systems. Retrieved from https://arXiv:1603.04467

2. Hamid Arabnejad. 2013. List-based task-scheduling algorithms on heterogeneous systems-an overview. In Proceedings of the Doctoral Symposium in Informatics Engineering, Vol. 93.

3. List Scheduling Algorithm for Heterogeneous Systems by an Optimistic Cost Table

4. Online scheduling of dependent tasks of cloud’s workflows to enhance resource utilization and reduce the makespan using multiple reinforcement learning-based agents

5. Christopher Berner Greg Brockman Brooke Chan Vicki Cheung Przemyslaw Debiak Christy Dennison David Farhi Quirin Fischer Shariq Hashme Christopher Hesse Rafal Józefowicz Scott Gray Catherine Olsson Jakub Pachocki Michael Petrov Henrique Pondé de Oliveira Pinto Jonathan Raiman Tim Salimans Jeremy Schlatter Jonas Schneider Szymon Sidor Ilya Sutskever Jie Tang Filip Wolski and Susan Zhang. 2019. Dota 2 with large scale deep reinforcement learning. Retrieved from http://arxiv.org/abs/1912.06680

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3