Semianalytical investigation on heat transfer in porous fins with temperature‐dependent thermal conductivity via the homotopy perturbation Sumudu transform approach

Author:

Gireesha B. J.1ORCID,Pavithra C. G.1,Keerthi M. L.2

Affiliation:

1. Department of PG Studies and Research in Mathematics Kuvempu University Shankaraghatta, Shivamogga Karnataka India

2. Department of Mathematics and Statistics M S Ramaiah University of Applied Sciences, Peenya Bengaluru Karnataka India

Abstract

AbstractA unique investigation has been undertaken to analyze the heat transmission by convective and radiative mechanisms in a fully saturated penetrable fin of a longitudinal structure positioned on a leaning surface. This study introduces the fusion of the realms of Homotopy perturbation and Sumudu transform techniques to address a previously unexplored problem involving a moving fin with temperature‐dependent thermal conductivity. In prior research papers, the Homotopy Perturbation Sumudu Transform Method (HPSTM) was utilized to obtain analytical solutions for fins featuring temperature‐dependent thermal conductivity. However, in our current study, we employ the HPSTM to tackle a novel problem involving a moving porous fin. This fin exhibits temperature‐dependent thermal conductivity and is subjected to convection and radiation effects. Through a comparison with numerical results, the present study has validated the dependability of its findings. The dimensionless temperature profile has been investigated by studying its relationship with several parameters. Here we observed that when the Peclet number is augmented by 400%, there is a corresponding 1.11% increase in thermal outline at the fin's extremity. Enhancing the value of radiation parameter by 400% declines the temperature of the fin tip by 14.079%. This study encourages the application of the Homotopy perturbation Sumudu transform technique in more complex fin problems.

Publisher

Wiley

Subject

Fluid Flow and Transfer Processes,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3