Individualized image region detection with total variation

Author:

Wu Sanyou1,Wang Fuying1,Feng Long1

Affiliation:

1. Department of Statistics and Actuarial Science The University of Hong Kong Hong Kong China

Abstract

AbstractMedical image data have emerged to be an indispensable component of modern medicine. Different from many general image problems that focus on outcome prediction or image recognition, medical image analysis pays more attention to model interpretation. For instance, given a list of medical images and corresponding labels of patients' health status, it is often of greater importance to identify the image regions that could differentiate the outcome status, compared to simply predicting labels of new images. Moreover, medical image data often demonstrate strong individual heterogeneity. In other words, the image regions associated with an outcome could be different across patients. As a consequence, the traditional one‐model‐fits‐all approach not only omits patient heterogeneity but also possibly leads to misleading or even wrong conclusions. In this article, we introduce a novel statistical framework to detect individualized regions that are associated with a binary outcome, that is, whether a patient has a certain disease or not. Moreover, we propose a total variation‐based penalization for individualized image region detection under a local label‐free scenario. Considering that local labeling is often difficult to obtain for medical image data, our approach may potentially have a wider range of applications in medical research. The effectiveness of our proposed approach is validated by two real histopathology databases: Colon Cancer and Camelyon16.

Publisher

Wiley

Reference38 articles.

1. Multiple instance classification: Review, taxonomy and comparative study

2. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

3. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer

4. R. L.DraelosandL.Carin.Hirescam: Faithful location representation in visual attention for explainable 3d medical image classification. arXiv preprint arXiv:2011.088912020.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3