A multiscale feature fusion‐guided lightweight semantic segmentation network

Author:

Ye Xin1ORCID,Pan Junchen1ORCID,Chen Jichen2,Zhang Jingbo3

Affiliation:

1. Institute of Artificial Intelligence and Data Science Xi'an Technological University Xi'an China

2. Computer Part III Xi'an Microelectronics Technology Institute Xi'an China

3. Technical Management Department Chaoyue Technology Co., Ltd. Xi'an China

Abstract

AbstractSemantic segmentation, a task of assigning class labels to each pixel in an image, has found applications in various real‐world scenarios, including autonomous driving and scene understanding. However, its widespread use is hindered by the high computational burden. In this paper, we propose an efficient semantic segmentation method based on Feature Cascade Fusion Network (FCFNet) to address this challenge. FCFNet utilizes a dual‐path framework comprising the Spatial Information Path (SIP) and the Context Information Path (CIP). SIP is a shallow structure that captures the local dependencies of each pixel to improve the accuracy of detailed segmentation. CIP is the main branch with a deeper structure that captures sufficient contextual information from input features. Moreover, we design an Efficient Receptive Field Module (ERFM) to enlarge the receptive field in the SIP. Meanwhile, Attention Shuffled Refinement Module is used to refine feature maps from different stages. Finally, we present an Attention‐Guided Fusion Module to fuse the low‐ and high‐level feature maps effectively. Experimental results show that our proposed FCFNet achieves 70.7% mean intersection over union (mIoU) on the Cityscapes data set and 68.1% mIoU on the CamVid data set, respectively, with inference speeds of 110 and 100 frames per second (FPS), respectively. Additionally, we evaluated FCFNet on the Nvidia Jetson Xavier embedded device, which demonstrated competitive performance while significantly reducing power consumption.

Funder

Education Department of Shaanxi Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3