DoubleU-NetPlus: a novel attention and context-guided dual U-Net with multi-scale residual feature fusion network for semantic segmentation of medical images
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
https://link.springer.com/content/pdf/10.1007/s00521-023-08493-1.pdf
Reference89 articles.
1. Ahmed MR, Robin TI, Shafin AA (2020) Automatic environmental sound recognition (aesr) using convolutional neural network. Int J Modern Educ Comput Sci 12(5):41–54
2. Ahmed MR, Islam S, Islam AM et al (2023) An ensemble 1d-cnn-lstm-gru model with data augmentation for speech emotion recognition. Expert Syst Appl 218(119):633. https://doi.org/10.1016/j.eswa.2023.119633
3. Al-Dhabyani W, Gomaa M, Khaled H et al (2020) Dataset of breast ultrasound images. Data Brief 28(104):863. https://doi.org/10.1016/j.dib.2019.104863
4. Al-Masni MA, Kim DH (2021) Cmm-net: contextual multi-scale multi-level network for efficient biomedical image segmentation. Sci Rep 11(1):1–18
5. Alom MZ, Hasan M, Yakopcic C, et al (2018) Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation. arXiv preprint arXiv:1802.06955
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Adaptive edge prior-based deep attention residual network for low-dose CT image denoising;Biomedical Signal Processing and Control;2024-12
2. SECA-Net: Squeezed-and-excitated contextual attention network for medical image segmentation;Biomedical Signal Processing and Control;2024-11
3. A multiscale feature fusion‐guided lightweight semantic segmentation network;Journal of Field Robotics;2024-08-08
4. Bi-attention DoubleUNet: A deep learning approach for carotid artery segmentation in transverse view images for non-invasive stenosis diagnosis;Biomedical Signal Processing and Control;2024-08
5. Dual-Stream CoAtNet models for accurate breast ultrasound image segmentation;Neural Computing and Applications;2024-05-27
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3