The generalized hyperbolic family and automatic model selection through the multiple‐choice LASSO

Author:

Bagnato Luca1ORCID,Farcomeni Alessio2ORCID,Punzo Antonio3ORCID

Affiliation:

1. Department of Economic and Social Sciences Catholic University of the Sacred Heart Piacenza Italy

2. Department of Economics and Finance Tor Vergata University of Rome Rome Italy

3. Department of Economics and Business University of Catania Catania Italy

Abstract

AbstractWe revisit the generalized hyperbolic (GH) distribution and its nested models. These include widely used parametric choices like the multivariate normal, skew‐, Laplace, and several others. We also introduce the multiple‐choice LASSO, a novel penalized method for choosing among alternative constraints on the same parameter. A hierarchical multiple‐choice Least Absolute Shrinkage and Selection Operator (LASSO) penalized likelihood is optimized to perform simultaneous model selection and inference within the GH family. We illustrate our approach through a simulation study and a real data example. The methodology proposed in this paper has been implemented in R functions which are available as supplementary material.

Publisher

Wiley

Subject

Computer Science Applications,Information Systems,Analysis

Reference50 articles.

1. A new look at the statistical model identification

2. S.Babić C.Ley andM.Palangetić.Elliptical symmetry tests inR (arXiv.org e‐print No. 2011.12560v1).2011http://arxiv.org/abs/2011.12560v1.

3. Babić S. Palangetić M. &Ley C.(2020).ellipticalsymmetry: Elliptical symmetry tests [Computer software manual]. Retrieved fromhttps://CRAN.R‐project.org/package=ellipticalsymmetryR package version 0.1.

4. Unconstrained representation of orthogonal matrices with application to common principal components

5. Exponentially decreasing distributions for the logarithm of particle size

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Laplace-based model with flexible tail behavior;Computational Statistics & Data Analysis;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3