Unconstrained representation of orthogonal matrices with application to common principal components

Author:

Bagnato LucaORCID,Punzo AntonioORCID

Abstract

AbstractMany statistical problems involve the estimation of a $$\left( d\times d\right) $$ d × d orthogonal matrix $$\varvec{Q}$$ Q . Such an estimation is often challenging due to the orthonormality constraints on $$\varvec{Q}$$ Q . To cope with this problem, we use the well-known PLU decomposition, which factorizes any invertible $$\left( d\times d\right) $$ d × d matrix as the product of a $$\left( d\times d\right) $$ d × d permutation matrix $$\varvec{P}$$ P , a $$\left( d\times d\right) $$ d × d unit lower triangular matrix $$\varvec{L}$$ L , and a $$\left( d\times d\right) $$ d × d upper triangular matrix $$\varvec{U}$$ U . Thanks to the QR decomposition, we find the formulation of $$\varvec{U}$$ U when the PLU decomposition is applied to $$\varvec{Q}$$ Q . We call the result as PLR decomposition; it produces a one-to-one correspondence between $$\varvec{Q}$$ Q and the $$d\left( d-1\right) /2$$ d d - 1 / 2 entries below the diagonal of $$\varvec{L}$$ L , which are advantageously unconstrained real values. Thus, once the decomposition is applied, regardless of the objective function under consideration, we can use any classical unconstrained optimization method to find the minimum (or maximum) of the objective function with respect to $$\varvec{L}$$ L . For illustrative purposes, we apply the PLR decomposition in common principle components analysis (CPCA) for the maximum likelihood estimation of the common orthogonal matrix when a multivariate leptokurtic-normal distribution is assumed in each group. Compared to the commonly used normal distribution, the leptokurtic-normal has an additional parameter governing the excess kurtosis; this makes the estimation of $$\varvec{Q}$$ Q in CPCA more robust against mild outliers. The usefulness of the PLR decomposition in leptokurtic-normal CPCA is illustrated by two biometric data analyses.

Funder

Università Cattolica del Sacro Cuore

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3