Tandem Synthesis of Bicyclicortho-Aminocarbonitrile Derivatives in Ionic Liquids
Author:
Affiliation:
1. Key Laboratory of Biotechnology on Medical Plant of Jiangsu Province; Xuzhou 221116 People's Republic of China
2. School of Chemistry and Chemical Engineering; Jiangsu Normal University; Xuzhou 221116 People's Republic of China
Publisher
Wiley
Subject
Organic Chemistry
Reference39 articles.
1. Target-Oriented and Diversity-Oriented Organic Synthesis in Drug Discovery
2. Multicomponent Domino Reaction from β-Ketoamides: Highly Efficient Access to Original Polyfunctionalized 2,6-Diazabicyclo[2.2.2]octane Cores
3. Total Synthesis of Diverse Carbogenic Complexity within the Resveratrol Class from a Common Building Block
4. Toward the ideal synthesis. New transition metal-catalyzed reactions inspired by novel medicinal leads
5. Inspirations from nature. New reactions, new therapeutic leads, and new drug delivery systems
Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Novel One-Pot Three-Component Approach to Orthoaminocarbonitrile Tetrahydronaphthalenes Using Triethylamine (Et_3N) as a Highly Efficient and Homogeneous Catalyst Under Mild Conditions and Investigating Its Anti-cancer Properties Through Molecular Docking Studies and Calculations;Qeios;2024-07-29
2. A Novel One-Pot Three-Component Approach to Orthoaminocarbonitrile Tetrahydronaphthalenes Using Triethylamine (Et_3N) as a Highly Efficient and Homogeneous Catalyst Under Mild Conditions and Investigating Its Anti-cancer Properties Through Molecular Docking Studies and Calculations;Qeios;2024-03-20
3. Design, fabrication and characterization of mesoporous yolk–shell nanocomposites as a sustainable heterogeneous nanocatalyst for synthesis of ortho-aminocarbonitrile tetrahydronaphthalenes;Scientific Reports;2023-12-18
4. Sonochemical synthesis of ortho‐aminocarbonitrile tetrahydronaphthalenes using mesoporous yolk–shell nanocomposites as a recyclable heterogeneous catalyst and evaluation of their in vitro antimicrobial activities;Applied Organometallic Chemistry;2023-11-08
5. Synthesis of orthoaminocarbonitrile tetrahydronaphthalenes catalyzed by butyl-3-methylimidazolium hexafluorophosphate ionic liquid base catalyst;Synthetic Communications;2022-09-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3