Various topological phases and their abnormal effects of topological acoustic metamaterials

Author:

Chen Yan‐Feng12ORCID,Chen Ze‐Guo234ORCID,Ge Hao123,He Cheng123,Li Xin1235,Lu Ming‐Hui123,Sun Xiao‐Chen123,Yu Si‐Yuan123,Zhang Xiujuan123

Affiliation:

1. National Laboratory of Solid‐State Microstructures & Department of Materials Science and Engineering Nanjing University Nanjing China

2. Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing China

3. Jiangsu Key Laboratory of Artificial Functional Materials Nanjing University Nanjing China

4. School of Materials Science and Intelligent Engineering Nanjing University Suzhou China

5. School of Mechanical Engineering Nanjing University of Science and Technology Nanjing China

Abstract

AbstractThe last 20 years have witnessed growing impacts of the topological concept on the branches of physics, including materials, electronics, photonics, and acoustics. Topology describes objects with some global invariant property under continuous deformation, which in mathematics could date back to the 17th century and mature in the 20th century. In physics, it successfully underpinned the physics of the Quantum Hall effect in 1984. To date, topology has been extensively applied to describe topological phases in acoustic metamaterials. As artificial structures, acoustic metamaterials could be well theoretically analyzed, on‐demand designed, and easily fabricated by modern techniques, such as three‐dimensional printing. Some new theoretical topological models were first discovered in acoustic metamaterials analogous to electronic counterparts, associated with novel effects for acoustics closer to applications. In this review, we focused on the concept of topology and its realization in airborne acoustic crystals, solid elastic phononic crystals, and surface acoustic wave systems. We also introduced emerging concepts of non‐Hermitian, higher‐order, and Floquet topological insulators in acoustics. It has been shown that the topology theory has such a powerful generality that among the disciplines from electron to photon and phonon, from electronic to photonics and acoustics, from acoustic topological theory to acoustic devices, could interact and be analogous to fertilize fantastic new ideas and prototype devices, which might find applications in acoustic engineering and noise‐vibration control engineering in the near future.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Edge states in non-Hermitian composite acoustic Su Schrieffer Heeger chains;Journal of Applied Physics;2024-01-23

2. Elastic topological edge states in non-Hermitian perturbative metamaterials;2023 Seventeenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials);2023-09-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3