Revealing the importance of suppressing formation of lithium hydride and hydrogen in Li anode protection

Author:

Xu Gaojie1234ORCID,Du Xiaofan123,Zhang Shenghang1235,Li Jiedong123,Dong Shanmu123ORCID,Hu Zhiwei6ORCID,Cui Guanglei1234ORCID

Affiliation:

1. Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao China

2. Shandong Energy Institute Qingdao China

3. Qingdao New Energy Shandong Laboratory Qingdao China

4. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China

5. School of Future Technology University of Chinese Academy of Sciences Beijing China

6. Max Planck Institute for Chemical Physics of Solids Dresden Germany

Abstract

AbstractThe reviving of the “Holy Grail” lithium metal batteries (LMBs) is greatly hindered by severe parasitic reactions between Li anode and electrolytes. Herein, first, we comprehensively summarize the failure mechanisms and protection principles of the Li anode. Wherein, despite being in dispute, the formation of lithium hydride (LiH) is demonstrated to be one of the most critical factors for Li anode pulverization. Secondly, we trace the research history of LiH at electrodes of lithium batteries. In LMBs, LiH formation is suggested to be greatly associated with the generation of H2 from Li/electrolyte intrinsic parasitic reactions, and these intrinsic reactions are still not fully understood. Finally, density functional theory calculations reveal that H2 adsorption ability of representative Li anode protective species (such as LiF, Li3N, BN, Li2O, and graphene) is much higher than that of Li and LiH. Therefore, as an important supplement of well‐known lithiophilicity theory/high interfacial energy theory and three key principles (mechanical stability, uniform ion transport, and chemical passivation), we propose that constructing an artificial solid electrolyte interphase layer enriched of components with much higher H2 adsorption ability than Li will serve as an effective principle for Li anode protection. In summary, suppressing formation of LiH and H2 will be very important for cycle life enhancement of practical LMBs.

Funder

Natural Science Foundation of Shandong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3