Fault‐tolerant control strategy for multicylinder hydraulic press machine based on dynamic control allocation and adjustable multiobjective optimization

Author:

Jia Chao1ORCID,Sun Yulin1,Du Lifeng2,Wang Hongkun1

Affiliation:

1. School of Electrical Engineering and Automation Tianjin University of Technology Tianjin China

2. Design Institute Tianjin Tianduan Press Co., Ltd Tianjin China

Abstract

AbstractA hierarchical controller is proposed for achieving high‐accuracy control and the dynamic balance with the presence of multiple faults of actuator, the external disturbance, and the model uncertainties in multicylinder hydraulic press machine (MCHPM). The method divides the controller design into three steps: Virtual fault‐tolerant control law, control allocation algorithm, and actuator control law, which are progressive. First, to precisely compensate the lumped disturbances including the multiple faults of actuator, the external disturbance, and the model uncertainties, a disturbance observer (DO) is developed. By combining the observer with the sliding mode control (SMC), a virtual fault‐tolerant control law is designed. Second, a highly integrated control allocation algorithm for the virtual fault‐tolerant control law is proposed to get the desired driving force, taking into account dynamic control allocation (DCA), multiobjective optimization (MOO) and Analytic Hierarchy Process (AHP) simultaneously. Third, taking the driving force obtained from above control allocation algorithm as the desired target, the control law of each cylinder is calculated. The global stability for the whole system is proved by the Lyapunov theory. Lastly, results of simulation and experiment show that the proposed controller can effectively handle different faults and have more superior control performance.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin Municipality

Publisher

Wiley

Subject

Control and Systems Engineering,Electrical and Electronic Engineering,Mathematics (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3