Characterization of landslide displacements in an active fault zone in Northwest China

Author:

Shi Xuguo1ORCID,Hu Xie2ORCID

Affiliation:

1. School of Geography and Information Engineering China University of Geosciences Wuhan China

2. College of Urban and Environmental Sciences Peking University Beijing China

Abstract

AbstractLandslides can be caused by natural forcing and anthropogenic activities. Zhouqu County (China) on the eastern margin of Qinghai‐Tibet Plateau is set within the active Pingding‐Huama fault zone with evident fractures on the land surface. Frequent landslides and debris flows have occurred in this region due to river erosion, rainfall and deforestation. Here we quantified the slope movements using time‐series synthetic aperture radar interferometry (InSAR) based on the ascending and descending Sentinel‐1 satellite images acquired between October 2014 and August 2020. We observed distinct displacements in the highly fractured fault zone. The eastward and vertical displacement time series between February 2017 and July 2020 were constrained by the common‐day ascending and descending acquisitions. The eastward rates (461 mm/year) were greater than those in the vertical direction (−185 mm/year). We also note displacement discontinuities across the thrust faults beneath the Suoertou and Zhongpai landslides. Seasonal variations in the displacement time series suggest that the cyclic rainfall is the primary driver for the mass wasting processes rather than the tectonic loading. As a complement to in situ observations, our results demonstrate that InSAR is an effective tool to characterize the spatio‐temporal nature of landslide displacements in complicated geological environments.Plain Language SummaryZhouqu County in the Pingding‐Huama fault zone in the eastern margin of Qinghai‐Tibet Plateau is identified as a high priority site to research on clusters of landslides and debris flows in a mixed geodynamic setting of active tectonics, seasonal rainfall, river erosion and anthropogenic activities. However, our knowledge about landslide kinematics in this complicated region is still limited. We relied on remote sensing images from one ascending and one descending Sentinel‐1 satellite tracks to constrain the spatial–temporal displacement dynamics of active landslides from 2014 to 2020. The spatial patterns of displacements are determined by thrust faulting, river erosion, and anthropogenic activities. The temporal variations of landslide speed are mainly controlled by the seasonal rainfall rather than the tectonic loading.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Earth-Surface Processes,Geography, Planning and Development

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3