Development of programs to predict the occurrence of mucositis from digital imaging and communications in medicine data by machine learning in head and neck volumetric modulated radiotherapy

Author:

Rachi Toshiya1ORCID,Ariji Takaki1,Takahashi Shinichi1

Affiliation:

1. Department of Radiological Technology National Cancer Center Hospital East Kashiwa Japan

Abstract

AbstractVolumetric modulated arc therapy (VMAT) with cisplatin for head and neck cancer is often accompanied by symptoms of pharyngeal and oral mucositis. However, no standard medical program exists for the prevention and treatment of mucositis, and the mechanisms of mucositis have not yet been fully proven. Therefore, adaptive radiotherapy (ART), which is a re‐planning process, is administered when severe mucositis develops during the treatment period. We extracted the treatment plans of patients who developed severe mucositis from DICOM data and used machine learning to determine its quantitative features. This study aimed to develop a machine learning program that can predict the development of mucositis requiring ART. This study included 61 patients who received concurrent chemotherapy and radiotherapy (RT). For each patient, the equivalent square field size of each segmental irradiation field used for VMAT, dose per segment (Gy), clinical target volume high, and mean dose of the oral cavity (Gy) were calculated. Furthermore, 671 five‐dimensional lists were generated from the acquired data. Support vector machine (SVM) and K‐nearest neighbor (KNN) were used for machine learning. For the accuracy score, the test size was varied from 10% to 90%, and the random number of data extracted in each test size was further varied from 1 to 100 to calculate a mean accuracy score. The mean accuracy scores of SVM and KNN were 0.981 ± 0.020 and 0.972 ± 0.033, respectively. The presence or absence of ART for mucositis was classified with high accuracy. The classification of the five‐dimensional list was implemented with high accuracy, and a program was constructed to predict the onset of mucositis requiring ART before treatment began. This study suggests that it may support preventive measures against mucositis and the completion of RT without having to re‐plan.

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3