Demographic and net primary productivity dynamics of primary and secondary tropical forests in Southwest China under a changing climate

Author:

Oo Sai Tun Tun12ORCID,Panthi Shankar1ORCID,Fan Ze‐Xin1ORCID,Song Xiao‐Yang1,Zhang‐Zheng Huanyuan3ORCID,Zaw Zaw1,Lu Hua‐Zheng14,Chen Hui1,Deng Yun14,Zhao Rong14,Lin Hua1,Fu Pei‐Li1ORCID

Affiliation:

1. CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Mengla Yunnan China

2. University of Chinese Academy of Sciences Beijing China

3. Environmental Change Institute, School of Geography and the Environment University of Oxford Oxford UK

4. Xishuangbanna Station for Tropical Rain Forest Ecosystem Studies, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Mengla Yunnan China

Abstract

AbstractTropical forests are major carbon sinks on the Earth's land surface. However, our understanding of how the demographic rate and carbon sink capacities of tropical forests respond to climate change remains limited. In this study, we investigated the impacts of environmental drivers on forest growth, mortality, recruitment, and stem net primary productivity (NPPstem) over 16 years at five tropical forest plots in Xishuangbanna, Southwest China. These plots are along a successional gradient spanning three tropical secondary forests (tropical secondary forest‐1 [TSF‐1], tropical secondary forest‐2 [TSF‐2], and tropical secondary forest‐3 [TSF‐3]) and two primary forests (tropical rainforest [TRF] and tropical karst forest [TKF]). Our results showed that early successional secondary forests (TSF‐2 and TSF‐3) had higher diameter growth rates and relative mortality rates. An extreme drought event during 2009–2010 reduced the growth rate, relative recruitment rate, and NPPstem for most plots while increasing mortality in early successional forest plots. We observed significant negative effects of maximum temperature (Tmax) on NPPstem and diameter growth rate across all plots. Additionally, we found that precipitation had significant positive effects on diameter growth rate across all plots. Furthermore, tree mortality increased with rising Tmax, whereas precipitation significantly enhanced tree recruitment. Our findings highlight the vulnerability of tree growth, mortality, recruitment, and productivity in tropical forests to extreme drought events in Southwest China. Continued climate warming and more frequent droughts will induce higher mortality rates and impede growth, thus reducing the carbon sink capacity of tropical forests, especially in early successional stage tropical secondary forests.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3