Investigating the impact of Cloisite® 15A nanoclays on the diffusivity of Irganox 1035 antioxidant in high‐density polyethylene nanocomposite

Author:

Mouloud Aicha1ORCID,Kerkour Abdelhakim1,Colin Xavier2,Ait Cherif Ghania1,Benchaoui Abdelmounaim1

Affiliation:

1. Laboratoire des Matériaux Organiques, Faculté de Technologie Université de Bejaia Bejaia Algeria

2. PIMM Arts et Métiers Institute of Technology, CNRS, CNAM, HESAM Paris France

Abstract

AbstractKnowing the diffusion coefficients of antioxidants in packaging materials is essential to assess their effectiveness in protecting materials against oxidation, but also to prevent their eventual migration to food. In this work, the diffusion of a commercial phenolic antioxidant (Irganox 1035) was measured experimentally in pristine high‐density polyethylene (HDPE) and in HDPE nanocomposite filled with 3 wt% of nanoclays (Cloisite® 15A). Diffusion experiments were performed using the Roe's method between 60 and 100°C. The local concentration of Irganox1035 in each film was measured by UV–Vis spectroscopy from the UV absorbance at 282 nm. The adjustment of the experimental data by Fick's second law allowed us to deduce the values of the diffusion coefficient of Irganox1035 at each temperature and to show that the temperature dependence of this coefficient obeys an Arrhenius' law. It is shown that the incorporation of 3 wt% of Cloisite®15A into HDPE significantly hinders the diffusion of Irganox 1035 and increases its activation energy. Several mechanistic assumptions could explain this result, first the increase in the tortuosity of diffusion paths, but also the possible establishment of strong intermolecular interactions between the antioxidant and some chemical groups on the nanofiller surface, or even the formation of an interphase with reduced molecular mobility around the nanofillers.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3