Technical note: High‐dose and ultra‐high dose rate (UHDR) evaluation of Al2O3:C optically stimulated luminescent dosimeter nanoDots and powdered LiF:Mg,Ti thermoluminescent dosimeters for radiation therapy applications

Author:

Liu Kevin12,Velasquez Brett1,Schüler Emil12

Affiliation:

1. Division of Radiation Oncology, Department of Radiation Physics The University of Texas MD Anderson Cancer Center Houston Texas USA

2. The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences Houston Texas USA

Abstract

AbstractBackgroundDosimetry in ultra‐high dose rate (UHDR) electron beamlines poses a significant challenge owing to the limited usability of standard dosimeters in high dose and high dose‐per‐pulse (DPP) applications.PurposeIn this study, Al2O3:C nanoDot optically stimulated luminescent dosimeters (OSLDs), single‐use powder‐based LiF:Mg,Ti thermoluminescent dosimeters (TLDs), and Gafchromic EBT3 film were evaluated at extended dose ranges (up to 40 Gy) in conventional dose rate (CONV) and UHDR beamlines to determine their usability for calibration and dose verification in the setting of FLASH radiation therapy.MethodsOSLDs and TLDs were evaluated against established dose‐rate–independent Gafchromic EBT3 film with regard to the potential influence of mean dose rate, instantaneous dose rate, and DPP on signal response. The dosimeters were irradiated at CONV or UHDR conditions on a 9‐MeV electron beam. Under UHDR conditions, different settings of pulse repetition frequency (PRF), pulse width (PW), and pulse amplitude were used to characterize the individual dosimeters’ response in order to isolate their potential dependencies on dose, dose rate, and DPP.ResultsThe OSLDs, TLDs, and Gafchromic EBT3 film were found to be suitable at a dose range of up to 40 Gy without any indication of saturation in signal. The response of OSLDs and TLDs in UHDR conditions were found to be independent of mean dose rate (up to 1440 Gy/s), instantaneous dose rate (up to 2 MGy/s), and DPP (up to 7 Gy), with uncertainties on par with nominal values established in CONV beamlines (± 4%). In cross‐comparing the response of OSLDs, TLDs and Gafchromic film at dose rates of 0.18–245 Gy/s, the coefficient of variation or relative standard deviation in the measured dose between the three dosimeters (inter‐dosimeter comparison) was found to be within 2%.ConclusionsWe demonstrated the dynamic range of OSLDs, TLDs, and Gafchromic film to be suitable up to 40 Gy, and we developed a protocol that can be used to accurately translate the measured signal in each respective dosimeter to dose. OSLDs and powdered TLDs were shown to be viable for dosimetric measurement in UHDR beamlines, providing dose measurements with accuracies on par with Gafchromic EBT3 film and their concurrent use demonstrating a means for redundant dosimetry in UHDR conditions.

Funder

National Institutes of Health

National Cancer Institute

Cancer Prevention and Research Institute of Texas

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3