Iridium‐Based Alkaline Hydrogen Oxidation Reaction Electrocatalysts

Author:

Lv Qingqing1,Liu Di2,Zhu Wei13,Zhuang Zhongbin13ORCID

Affiliation:

1. State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China

2. Department of Pharmaceutical Engineering School of Life and Health Sciences HuZhou College Huzhou 313000 China

3. Beijing Key Laboratory of Energy Environmental Catalysis Beijing 100029 China

Abstract

AbstractThe hydroxide exchange membrane fuel cells (HEMFCs) are promising but lack of high‐performance anode hydrogen oxidation reaction (HOR) electrocatalysts. The platinum group metals (PGMs) have the HOR activity in alkaline medium two to three orders of magnitude lower than those in acid, leading to the high required PGMs amount on anode to achieve high HEMFC performance. The mechanism study demonstrates the hydrogen binding energy of the catalyst determines the alkaline HOR kinetics, and the adsorbed OH and water on the catalyst surface promotes HOR. Iridium (Ir) has a unique advantage for alkaline HOR due to its similar hydrogen binding energy to Pt and enhanced adsorption of OH. However, the HOR activity of Ir/C is still unsatisfied in practical HEMFC applications. Further fine tuning the adsorption of the intermediate on Ir‐based catalysts is of great significance to improve their alkaline HOR activity, which can be reasonably realized by structure design and composition regulation. In this concept, we address the current understanding about the alkaline HOR mechanism and summarize recent advances of Ir‐based electrocatalysts with enhanced alkaline HOR activity. We also discuss the perspectives and challenges on Ir‐based electrocatalysts in the future.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3