Bioinspired Hydrophobicity for Enhancing Electrochemical CO2 Reduction

Author:

Bai Jingwen12,Wang Wenshuo2,Liu Jian12ORCID

Affiliation:

1. College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China

2. Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Shandong Energy Institute Qingdao New Energy Shandong Laboratory Qingdao 266101 P. R. China

Abstract

AbstractElectrochemical carbon dioxide reduction (CO2R) is a promising pathway for converting greenhouse gasses into valuable fuels and chemicals using intermittent renewable energy. Enormous efforts have been invested in developing and designing CO2R electrocatalysts suitable for industrial applications at accelerated reaction rates. The microenvironment, specifically the local CO2 concentration (local [CO2]) as well as the water and ion transport at the CO2–electrolyte–catalyst interface, also significantly impacts the current density, Faradaic efficiency (FE), and operation stability. In nature, hydrophobic surfaces of aquatic arachnids trap appreciable amounts of gases due to the “plastron effect”, which could inspire the reliable design of CO2R catalysts and devices to enrich gaseous CO2. In this review, starting from the wettability modulation, we summarize CO2 enrichment strategies to enhance CO2R. To begin, superwettability systems in nature and their inspiration for concentrating CO2 in CO2R are described and discussed. Moreover, other CO2 enrichment strategies, compatible with the hydrophobicity modulation, are explored from the perspectives of catalysts, electrolytes, and electrolyzers, respectively. Finally, a perspective on the future development of CO2 enrichment strategies is provided. We envision that this review could provide new guidance for further developments of CO2R toward practical applications.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Wiley

Subject

General Chemistry,Catalysis,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3