Exploring Hydrogen Storage Capacity in Metal‐Organic Frameworks: A Bayesian Optimization Approach

Author:

Ghude Sumedh1,Chowdhury Chandra2ORCID

Affiliation:

1. Department of Physics Indian Institute of Technology Madras Chennai 600036 India

2. Institute of Catalysis Research and Technology (IKFT) Karlsruhe Institute of Technology (KIT) 76344 Eggeinstein-Leopoldshafen Germany

Abstract

AbstractMetal‐organic Frameworks (MOFs) can be employed for gas storage, capture, and sensing. Finding the MOF with the best adsorption property from a large database is usual for adsorption calculations. In high‐throughput computational research, the expense of computing thermodynamic quantities limits the finding of MOFs for separations and storage. In this work, we demonstrate the usefulness of Bayesian optimization (BO) for estimating the H2 uptake capability of MOFs by using an existing dataset containing 98000 real and hypothetical MOFs. We demonstrate that in order to recover the best candidate MOFs, less than 0.027 % of the database needs to be screened using the BO method. This allows future adsorption experiments on a small sample of MOFs to be undertaken with minimal experimental effort by effectively screening MOF databases. In addition, the presented BO can provide comprehensible material design insights, and the framework will be transferable to optimizing other target properties. We also suggest using Particle Swarm Optimisation (PSO), a swarm intelligence technique in artificial intelligence, to estimate MOFs’ H2 uptake potential to achieve results comparable to BO. In addition, we implement a novel modification of PSO called Evolutionary‐PSO (EPSO) to compare and find interesting outcomes.

Publisher

Wiley

Subject

General Chemistry,Catalysis,Organic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3