Affiliation:
1. Department of Material Chemistry Graduate School of Engineering Kyoto University Kyotodaigaku-katsura, Nishikyo Kyoto 615-8510 Japan
2. Institute for Catalysis Hokkaido University Sapporo Hokkaido 001-0021 Japan
3. List Sustainable Digital Transformation Catalyst Collaboration Research Platform Institute for Chemical Reaction Design and Discovery (ICReDD List-PF) Hokkaido University Sapporo Hokkaido 001-0021 Japan
Abstract
AbstractScavengers that capture reactive chemical substances are used to prevent the decomposition of materials. However, in the field of catalysis, the development of scavengers that inhibit background pathways has attracted little attention, although the concept will open up an otherwise inaccessible reaction space. In catalytic bromination, fast non‐catalyzed background reactions disturb the catalytic control of the selectivity, even when using N‐bromoamide reagents, which have a milder reactivity than bromine (Br2). Here, we developed a trans‐cyclooctene (TCO) bearing a 2‐pyridylethyl group to efficiently retard background reactions by capturing Br2 in bromocyclization using N‐bromosuccinimide. The use of less than a stoichiometric amount of the TCO was sufficient to inhibit non‐catalyzed reactions, and mechanistic studies using the TCO revealed that in situ‐generated Br2 provides non‐catalyzed reaction pathways based on a chain mechanism. The TCO is useful as an additive for improving enantioselectivity and regioselectivity in catalytic reactions. Cooperative systems using the TCO with selective catalysts offer an alternative strategy for optimizing catalyst‐controlled selectivity during bromination. Moreover, it also served as an indicator of Br2 involved in catalytic reaction pathways; thus, the TCO was useful as a probe for mechanistic investigations into the involvement of Br2 in bromination reactions of interest.
Subject
General Chemistry,Catalysis,Organic Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献