Charge‐Assisted Ionic Hydrogen‐Bonded Organic Frameworks: Designable and Stabilized Multifunctional Materials

Author:

Chen Xu‐Yong1,Cao Li‐Hui1ORCID,Bai Xiang‐Tian1,Cao Xiao‐Jie1

Affiliation:

1. Shaanxi Key Laboratory of Chemical Additives for Industry College of Chemistry and Chemical Engineering Shaanxi University of Science and Technology Xi'an 710021 P. R. China

Abstract

AbstractHydrogen‐bonded organic frameworks (HOFs) are a class of crystalline framework materials assembled by hydrogen bonds. HOFs have the advantages of high crystallinity, mild reaction conditions, good solution processability, and reproducibility. Coupled with the reversibility and flexibility of hydrogen bonds, HOFs can be assembled into a wide diversity of crystalline structures. Since the bonding energy of hydrogen bonds is lower than that of ligand and covalent bonds, the framework of HOFs is prone to collapse after desolventisation and the stability is not high, which limits the development and application of HOFs. In recent years, numerous stable and functional HOFs have been developed by π–π stacking, highly interpenetrated networks, charge‐assisted, ligand‐bond‐assisted, molecular weaving, and covalent cross‐linking. Charge‐assisted ionic HOFs introduce electrostatic attraction into HOFs to improve stability while enriching structural diversity and functionality. In this paper, we review the development, the principles of rational design and assembly of charge‐assisted ionic HOFs, and introduces the different building block construction modes of charge‐assisted ionic HOFs. Highlight the applications of charge‐assisted ionic HOFs in gas adsorption and separation, proton conduction, biological applications, etc., and prospects for the diverse design of charge‐assisted ionic HOFs structures and multifunctional applications.

Funder

National Natural Science Foundation of China

Fundamental and Frontier Research Project of Chongqing Municipality

Publisher

Wiley

Subject

General Chemistry,Catalysis,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3