Investigating the degradation potential of microbial consortia for perfluorooctane sulfonate through a functional "top-down" screening approach

Author:

Liang Yu,Ma AnzhouORCID

Abstract

Perfluorooctane sulfonate (PFOS) is a prominent perfluorinated compound commonly found in the environment, known to pose various risks to human health. However, the removal of PFOS presents significant challenges, primarily due to the limited discovery of bacteria capable of effectively degrading PFOS. Moreover, single degradation bacteria often encounter obstacles in individual cultivation and the breakdown of complex pollutants. In contrast, microbial consortia have shown promise in pollutant degradation. This study employed a continuous enrichment method, combined with multiple co-metabolic substrates, to investigate a microbial consortium with the potential for PFOS degradation. By employing this methodology, we effectively identified a microbial consortium that demonstrated the capacity to reduce PFOS when exposed to an optimal concentration of methanol. The consortium predominantly comprised of Hyphomicrobium species (46.7%) along with unclassified microorganisms (53.0%). Over a duration of 20 days, the PFOS concentration exhibited a notable decrease of 56.7% in comparison to the initial level, while considering the exclusion of adsorption effects. Furthermore, by comparing the predicted metabolic pathways of the microbial consortium with the genome of a known chloromethane-degrading bacterium, Hyphomicrobium sp. MC1, using the KEGG database, we observed distinct variations in the metabolic pathways, suggesting the potential role of the unclassified microorganisms. These findings underscore the potential effectiveness of a "top-down" functional microbial screening approach in the degradation of stubborn pollutants.

Funder

National Key Research and Development Program of China

The Second Tibetan Plateau Scientific Expedition and Research Program

Key Research and Development Project of Qinghai Province

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3