A combined compact finite difference scheme for solving the acoustic wave equation in heterogeneous media

Author:

Li Da1,Li Keran1,Liao Wenyuan1ORCID

Affiliation:

1. Department of Mathematics and Statistics University of Calgary Calgary Alberta Canada

Abstract

AbstractIn this paper, we consider the development and analysis of a new explicit compact high‐order finite difference scheme for acoustic wave equation formulated in divergence form, which is widely used to describe seismic wave propagation through a heterogeneous media with variable media density and acoustic velocity. The new scheme is compact and of fourth‐order accuracy in space and second‐order accuracy in time. The compactness of the scheme is obtained by the so‐called combined finite difference method, which utilizes the boundary values of the spatial derivatives and those boundary values are obtained by one‐sided finite difference approximation. An empirical stability analysis has been conducted to obtain the Courant‐Friedrichs‐Levy (CFL) condition, which confirmed the conditional stability of the new scheme. Four numerical examples have been conducted to validate the convergence and effectiveness of the new scheme. The application of the new scheme to a realistic wave propagation problem with a Perfect Matched Layer is validated in this paper as well.

Publisher

Wiley

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3