Estimation of soil moisture using environmental covariates and machine learning algorithms in Cathedral Peak Catchment, South Africa

Author:

Kibirige Daniel Murungi Kironde1ORCID,Gokool Shaeden1,Mkhize Zama Nosihle1

Affiliation:

1. Centre for Water Resources Research, School of Agricultural, Earth and Environmental Science University of KwaZulu‐Natal Scottsville South Africa

Abstract

AbstractSoil moisture (SM) is a fundamental constituent of the terrestrial environment and the hydrological cycle. Owing to its significant influence on catchment hydrological responses, it can be utilized as an indicator of floods and droughts to aid early warning systems. This study aimed to develop a field‐scale method to estimate SM using parametric and machine learning‐based methods to compare whether advanced artificial intelligence methods can give similar results as traditional methods. Considering this, monthly observed SM data (from the top 10 cm), environmental covariates, and remotely sensed data from March 2019 to July 2021 for the Cathedral Peak Research Catchments VI and IX in South Africa were obtained. From the 241 observations obtained across 12 sites, 160 (∼66%) were used for model training, while the remaining 81 (∼34%) were used for model testing. Employing 10‐fold cross‐validation, the individual machine learning models (viz., support vector machine [SVM], random forest (RF), k‐nearest neighbor, classification and regression trees [Rpart], and generalized linear model) displayed a satisfactory performance (R2 = 0.52–0.79; root mean square error = 3.79–5.80). In the validation phase, the RF model displayed a superior performance, followed by the SVM. Subsequent SM estimation using the hybrid model produced satisfactory results in training (R2 = 0.90) and testing (R2 = 0.45). The results obtained from this study can aid in predicting SM variations in catchments with limited monitoring. Furthermore, this model can be applied in drought monitoring, forecasting, and informing agricultural management practices.

Publisher

Wiley

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3