Unsupervised self-training method based on deep learning for soil moisture estimation using synergy of sentinel-1 and sentinel-2 images
Author:
Affiliation:
1. FRB-CESAB, Montpellier, France
2. RIADI Laboratory, National School of Computer Science, Manouba, Tunisia
3. Laboratoire d’Eremologie et de LCD (LR16IRA01), Institut des Regions Arides (IRA), University of Gabes, Gabes, Tunisia
Funder
The authors have no funding to report
Publisher
Informa UK Limited
Subject
General Earth and Planetary Sciences,Computer Science Applications
Link
https://www.tandfonline.com/doi/pdf/10.1080/19479832.2022.2106317
Reference31 articles.
1. Soil Moisture Estimation From Smap Observations Using Long Short- Term Memory (LSTM)
2. Review of Machine Learning Approaches for Biomass and Soil Moisture Retrievals from Remote Sensing Data
3. Synergetic Use of Sentinel-1 and Sentinel-2 Data for Soil Moisture Mapping at Plot Scale
4. Machine learning algorithms for soil moisture estimation using Sentinel-1: Model development and implementation
5. Estimation of soil moisture content under high maize canopy coverage from UAV multimodal data and machine learning
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Advances in remote sensing based soil moisture retrieval: applications, techniques, scales and challenges for combining machine learning and physical models;Artificial Intelligence Review;2024-08-02
2. Evaluation of Soil As Concentration Estimation Method Based on Spectral Indices;SPECTROSC SPECT ANAL;2024
3. Estimation of soil moisture from remote sensing products using an ensemble machine learning model: a case study of Lake Urmia Basin, Iran;Earth Science Informatics;2023-12-02
4. Machine learning for food security: current status, challenges, and future perspectives;Artificial Intelligence Review;2023-10-27
5. Estimation of soil moisture using environmental covariates and machine learning algorithms in Cathedral Peak Catchment, South Africa;Vadose Zone Journal;2023-10-25
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3