Combining root and soil hydraulics in macroscopic representations of root water uptake

Author:

Vanderborght Jan1ORCID,Leitner Daniel1,Schnepf Andrea1ORCID,Couvreur Valentin2,Vereecken Harry1ORCID,Javaux Mathieu12ORCID

Affiliation:

1. Agrosphere Institute IBG‐3, Forschungszentrum Jülich GmbH Jülich Germany

2. Earth and Life Institute University of Louvain Louvain‐la‐Neuve Belgium

Abstract

AbstractPlant water uptake and plant and soil water status are important for the soil water balance and plant growth. They depend on atmospheric water demand and the accessibility of soil water to plant roots, which is in turn related to the hydraulic properties of the root system and the soil around root segments. We present a simulation model that describes water flow in the soil–plant system mechanistically considering both root and soil hydraulic properties. We developed an approach to upscale three‐dimensional (3D) flow in the soil toward root segments of a 3D root architecture to a model that considers one‐dimensional flow between horizontal soil layers and radial flow to root segments in that layer. The upscaled model couples upscaled linear flow equations in the root system with an analytical solution of the nonlinear radial flow equation between the soil and roots. The upscaled model avoids simplifying assumptions about root hydraulic properties and water potential drops near roots made in, respectively, soil‐ and root‐centered models. Xylem water potentials and soil–root interface potentials are explicitly simulated and show, respectively, large variations with depth and large deviations from bulk soil water potentials under dry soil conditions. Accounting for hydraulic gradients in the soil around root segments led to an earlier but slower reduction of transpiration during a drought period and a better plant water status with higher nighttime plant water potentials.

Funder

H2020 European Research Council

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Soil Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3