Phenotyping and modeling of root hydraulic architecture reveal critical determinants of axial water transport

Author:

Boursiac Yann1ORCID,Pradal Christophe234ORCID,Bauget Fabrice1,Lucas Mikaël1ORCID,Delivorias Stathis1ORCID,Godin Christophe3ORCID,Maurel Christophe1ORCID

Affiliation:

1. Institute for Plant Sciences of Montpellier (IPSiM), Univ Montpellier, CNRS, INRAE, Institut Agro , Montpellier 34060, France

2. CIRAD, UMR AGAP Institut , Montpellier 34398, France

3. Inria Project-team Virtual Plants, UMR AGAP, Univ Montpellier, INRIA, CIRAD, INRAE , Montpellier 34398, France

4. Inria and LIRMM, Univ Montpellier, CNRS , Montpellier 34095, France

Abstract

Abstract Water uptake by roots is a key adaptation of plants to aerial life. Water uptake depends on root system architecture (RSA) and tissue hydraulic properties that, together, shape the root hydraulic architecture. This work investigates how the interplay between conductivities along radial (e.g. aquaporins) and axial (e.g. xylem vessels) pathways determines the water transport properties of highly branched RSAs as found in adult Arabidopsis (Arabidopsis thaliana) plants. A hydraulic model named HydroRoot was developed, based on multi-scale tree graph representations of RSAs. Root water flow was measured by the pressure chamber technique after successive cuts of a same root system from the tip toward the base. HydroRoot model inversion in corresponding RSAs allowed us to concomitantly determine radial and axial conductivities, providing evidence that the latter is often overestimated by classical evaluation based on the Hagen–Poiseuille law. Organizing principles of Arabidopsis primary and lateral root growth and branching were determined and used to apply the HydroRoot model to an extended set of simulated RSAs. Sensitivity analyses revealed that water transport can be co-limited by radial and axial conductances throughout the whole RSA. The number of roots that can be sectioned (intercepted) at a given distance from the base was defined as an accessible and informative indicator of RSA. The overall set of experimental and theoretical procedures was applied to plants mutated in ESKIMO1 and previously shown to have xylem collapse. This approach will be instrumental to dissect the root water transport phenotype of plants with intricate alterations in root growth or transport functions.

Funder

Agence Nationale de la Recherche

European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3