Ecosystem functions of plant diversity: Comparisons from a large‐scale marsh restoration experiment in California, USA

Author:

Shikuzawa Jenna12,Watson Elizabeth B.3,Tanner Karen4ORCID,Wilburn Brittany3,Fork Susanne K.2,Larson Sophia3,Fountain Monique C.2,Thomsen Alexandra2,Wasson Kerstin24ORCID

Affiliation:

1. Coastal and Marine Management University Centre of the Westfjords Ísafjörður Iceland

2. Elkhorn Slough National Estuarine Research Reserve Watsonville California USA

3. Department of Biodiversity, Earth and Environmental Science and the Academy of Natural Sciences Drexel University Philadelphia Pennsylvania USA

4. Ecology and Evolutionary Biology Department University of California Santa Cruz California USA

Abstract

AbstractAlthough the promotion of biodiversity has been recognized as an important conservation goal, salt marsh restoration typically focuses on reestablishing dominant foundation species. Salt marsh restoration projects that add or remove sediment to optimize marsh elevation often result in a bare landscape following construction. Restoration managers must decide whether to plant and, if so, which species. This decision can be difficult because few studies have examined the ecological functions of individual species, especially those that are less abundant. Within a major salt marsh restoration project in Elkhorn Slough, California, where 17,000 plants of five high marsh species were planted, we investigated how rarer species and the naturally recruiting dominant (Salicornia pacifica) differ in ecosystem function. We evaluated 31 different metrics related to blue carbon, plant productivity, environmental effects, and community interactions. No single species had the greatest ecological function across this suite of metrics, and measured effects were mainly independent, with only 16 of 435 pairwise comparisons revealing a strong correlation. We found significant differences among species for 18 metrics, revealing key contrasts in ecosystem function, with significant effects of marsh elevation and interaction between effects of species and elevation on some of these functions. S. pacifica scored highest for metrics such as recruitment and canopy height but other species outperformed Salicornia in other metrics. Frankenia salina had the greatest ecological function in the highest number of metrics, including cover and belowground biomass carbon content, but other species had higher rates of photosynthesis and harbored fewer individuals of invasive arthropods. We recommend planting a suite of less common species at restoration sites to provide more diverse functions across the landscape. F. salina in particular is recommended for its tolerance of hypersalinity and low moisture conditions. Our demonstration of the value of complementing restoration of the dominant foundation species with restoration of less common species is applicable to restoration of other ecosystems beyond salt marshes. The approach we implemented, evaluating a large suite of functions for multiple species across a restored landscape, can serve as a model for investigations of the importance of biodiversity for enhancing multifunctionality in other restored ecosystems.

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3