Affiliation:
1. School of Microelectronics Shandong University Jinan Shandong 250101 China
2. TIH Microelectronics Limited Corporation Jinan Shandong 250101 China
Abstract
SummaryTraditional hardware security primitives such as physical unclonable functions (PUFs) are quite vulnerable to machine learning (ML) attacks. The primary reason is that PUFs rely on process mismatches between two identically designed circuit blocks to generate deterministic math functions as the secret information sources. Unfortunately, ML algorithms are pretty efficient in modeling deterministic math functions. In order to resist against ML attacks, in this letter, a novel hardware security primitive named neural network (NN) chain is proposed by utilizing noise data to generate chaotic NNs for achieving authentication. In a NN chain, two independent batches of noise data are utilized as the input and output training data of NNs, respectively, to maximize the uncertainty within the NN chain. In contrast to a regular PUF, the proposed NN chain is capable of achieving over 20 times ML attack‐resistance and 100% reliability with less than 39% power and area overhead.
Subject
Applied Mathematics,Electrical and Electronic Engineering,Computer Science Applications,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献