De novo design of monomeric helical bundles for pH‐controlled membrane lysis

Author:

Goldbach Nicolas12ORCID,Benna Issa13,Wicky Basile I. M.14,Croft Jacob T.5,Carter Lauren14,Bera Asim K.14,Nguyen Hannah14,Kang Alex14,Sankaran Banumathi6,Yang Erin C.147,Lee Kelly K.578,Baker David149ORCID

Affiliation:

1. Institute for Protein Design University of Washington Seattle Washington USA

2. Molecular Life Sciences Technical University of Munich Munich Germany

3. Department of Bioengineering University of Washington Seattle Washington USA

4. Department of Biochemistry University of Washington Seattle Washington USA

5. Department of Medicinal Chemistry University of Washington Seattle Washington USA

6. Molecular Biophysics and Integrated Bioimaging Lawrence Berkeley National Laboratory Berkeley California USA

7. Biological Physics, Structure and Design Graduate Program University of Washington Seattle Washington USA

8. Department of Microbiology University of Washington Seattle Washington USA

9. Howard Hughes Medical Institute University of Washington Seattle Washington USA

Abstract

AbstractTargeted intracellular delivery via receptor‐mediated endocytosis requires the delivered cargo to escape the endosome to prevent lysosomal degradation. This can in principle be achieved by membrane lysis tightly restricted to endosomal membranes upon internalization to avoid general membrane insertion and lysis. Here, we describe the design of small monomeric proteins with buried histidine containing pH‐responsive hydrogen bond networks and membrane permeating amphipathic helices. Of the 30 designs that were experimentally tested, all expressed in Escherichia coli, 13 were monomeric with the expected secondary structure, and 4 designs disrupted artificial liposomes in a pH‐dependent manner. Mutational analysis showed that the buried histidine hydrogen bond networks mediate pH‐responsiveness and control lysis of model membranes within a very narrow range of pH (6.0–5.5) with almost no lysis occurring at neutral pH. These tightly controlled lytic monomers could help mediate endosomal escape in designed targeted delivery platforms.

Funder

Office of Science

U.S. Department of Energy

Publisher

Wiley

Subject

Molecular Biology,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3