ProteinMPNN Recovers Complex Sequence Properties of Transmembrane β-barrels

Author:

Dolorfino MarissaORCID,Samanta RituparnaORCID,Vorobieva AnastassiaORCID

Abstract

AbstractRecent deep-learning (DL) protein design methods have been successfully applied to a range of protein design problems, including thede novodesign of novel folds, protein binders, and enzymes. However, DL methods have yet to meet the challenge ofde novomembrane protein (MP) and the design of complex β-sheet folds. We performed a comprehensive benchmark of one DL protein sequence design method, ProteinMPNN, using transmembrane and water-soluble β-barrel folds as a model, and compared the performance of ProteinMPNN to the new membrane-specific Rosetta Franklin2023 energy function. We tested the effect of input backbone refinement on ProteinMPNN performance and found that given refined and well-defined inputs, ProteinMPNN more accurately captures global sequence properties despite complex folding biophysics. It generates more diverse TMB sequences than Franklin2023 in pore-facing positions. In addition, ProteinMPNN generated TMB sequences that passed state-of-the-art in silico filters for experimental validation, suggesting that the model could be used inde novodesign tasks of diverse nanopores for single-molecule sensing and sequencing. Lastly, our results indicate that the low success rate of ProteinMPNN for the design of β-sheet proteins stems from backbone input accuracy rather than software limitations.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3