Machine learning approach for the prediction of the number of sulphur atoms in peptides using the theoretical aggregated isotope distribution

Author:

Agten Annelies1ORCID,Claesen Jurgen2ORCID,Burzykowski Tomasz13,Valkenborg Dirk1

Affiliation:

1. Uhasselt Data Science Institute (DSI) Agoralaan, Diepenbeek Belgium

2. Epidemiology and Data Science Vrije Universiteit Amsterdam Amsterdam the Netherlands

3. Department of Statistics and Medical Informatics Medical University of Bialystok Bialystok Poland

Abstract

RationaleThe observed isotope distribution is an important attribute for the identification of peptides and proteins in mass spectrometry–based proteomics. Sulphur atoms have a very distinctive elemental isotope definition, and therefore, the presence of sulphur atoms has a substantial effect on the isotope distribution of biomolecules. Hence, knowledge of the number of sulphur atoms can improve the identification of peptides and proteins.MethodsIn this paper, we conducted a theoretical investigation on the isotope properties of sulphur‐containing peptides. We proposed a gradient boosting approach to predict the number of sulphur atoms based on the aggregated isotope distribution. We compared prediction accuracy and assessed the predictive power of the features using the mass and isotope abundance information from the first three, five and eight aggregated isotope peaks.ResultsMass features alone are not sufficient to accurately predict the number of sulphur atoms. However, we reach near‐perfect prediction when we include isotope abundance features. The abundance ratios of the eighth and the seventh, the fifth and the fourth, and the third and the second aggregated isotope peaks are the most important abundance features. The mass difference between the eighth, the fifth or the third aggregated isotope peaks and the monoisotopic peak are the most predictive mass features.ConclusionsBased on the validation analysis it can be concluded that the prediction of the number of sulphur atoms based on the isotope profile fails, because the isotope ratios are not measured accurately. These results indicate that it is valuable for future instrument developments to focus more on improving spectral accuracy to measure peak intensities of higher‐order isotope peaks more accurately.

Funder

Fonds Wetenschappelijk Onderzoek

Publisher

Wiley

Subject

Organic Chemistry,Spectroscopy,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3