A compositional data model to predict the isotope distribution for average peptides using a compositional spline model

Author:

Annelies Agten1ORCID,Frédérique Vilenne12ORCID,Piotr Prostko1,Dirk Valkenborg1

Affiliation:

1. Data Science Institute Hasselt University Diepenbeek Belgium

2. Health Flemish Institute for Technological Research (VITO) Mol Belgium

Abstract

AbstractWe propose an updated approach for approximating the isotope distribution of average peptides given their monoisotopic mass. Our methodology involves in‐silico cleavage of the entire UNIPROT database of human‐reviewed proteins using Trypsin, generating a theoretical peptide dataset. The isotope distribution is computed using BRAIN. We apply a compositional data modelling strategy that utilizes an additive log‐ratio transformation for the isotope probabilities followed by a penalized spline regression. Furthermore, due to the impact of the number of sulphur atoms on the course of the isotope distribution, we develop separate models for peptides containing zero up to five sulphur atoms. Additionally, we propose three methods to estimate the number of sulphur atoms based on an observed isotope distribution. The performance of the spline models and the sulphur prediction approaches is evaluated using a mean squared error and a modified Pearson's χ2 goodness‐of‐fit measure on an experimental UPS2 data set. Our analysis reveals that the variability in spectral accuracy, that is, the variability between MS1 scans, contributes more to the errors than the approximation of the theoretical isotope distribution by our proposed average peptide model. Moreover, we find that the accuracy of predicting the number of sulphur atoms based on the observed isotope distribution is limited by measurement accuracy.

Publisher

Wiley

Subject

Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3