Three‐dimensionalized feature‐based LiDAR‐visual odometry for online mapping of unpaved road surfaces

Author:

Lee Junwoon1ORCID,Kurisu Masamitsu1,Kuriyama Kazuya1

Affiliation:

1. Komatsu MIRAI Construction Equipment Cooperative Research Center, Graduate School of Engineering Osaka University Osaka Japan

Abstract

AbstractAutomated maintenance and motion planning for unpaved roads are research areas of great interest in the field robotics. Constructing such systems necessitates the development of surface maps for unpaved roads. However, the lack of distinctive features on unpaved roads degrades the performance of light detection and ranging (LiDAR)‐based mapping. To address this problem, this paper proposes three‐dimensionalized feature‐based LiDAR‐visual odometry (TFB odometry) for the online mapping of unpaved road surfaces. TFB odometry introduces a novel interpolation concept to directly estimate the three‐dimensional coordinates of the image features using LiDAR. Furthermore, LiDAR intensity‐weighted motion estimation is proposed to effectively mitigate the effects of dust, which significantly impact the performance of LiDAR. Finally, TFB odometry includes pose graph optimization to efficiently fuse global navigation satellite system data and poses estimated from motion estimation. Through field experiments on unpaved roads, TFB odometry demonstrated successful online full mapping and outperformed other simultaneous localization and mapping methods. Additionally, it demonstrated remarkable performance in accurately mapping road surface anomalies, even in dusty regions.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3