Insights into peptide profiling of sturgeon myofibrillar proteins with low temperature vacuum heating

Author:

Jiang Dan‐dan1,Shen Shi‐ke23,Yu Wen‐tao23,Bu Qian‐yun23,Ding Zhi‐wen23,Fu Jing‐jing23ORCID

Affiliation:

1. School of Data Sciences, Zhejiang University of Finance and Economics Hangzhou China

2. School of Food Science and Biotechnology, Zhejiang Gongshang University Hangzhou China

3. Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University Hangzhou China

Abstract

AbstractBACKGROUNDProtein oxidation during food processing causes changes in the balance of protein–molecular interactions and protein–water interactions, ultimately leading to protein denaturation, which results in the loss of a range of functional properties. Therefore, how to control the oxidative modification of proteins during processing has been the focus of research.RESULTSIn the present study, the intrinsic fluorescence value of the myofibrillar proteins (MP) decreased and the surface hydrophobicity value increased, indicating that the heat treatment caused a significant change in the conformation of the MP. With an increase in heating temperature, protein carbonyl content increased, total sulfhydryl content decreased, and protein secondary structure changed from α‐helix to β‐sheet, indicating that protein oxidation and aggregation occurred. Sodium dodecyl sulfate‐polyacrylamide gel electrophoresis revealed that heat treatment can lead to the degradation of proteins, especially myosin heavy chain, although actin had a certain thermal stability. In total, 733 proteins were identified by proteomics, and the protein oxidation caused by low temperature vacuum heating (LTVH) was determined to be mild oxidation dominated by malondialdehyde and 4‐hydroxynonenal by oxidation site division.CONCLUSIONThe present study has revealed the effect of LTVH treatment on the protein oxidation modification behavior of sturgeon meat, and explored the effect mechanism of LTVH treatment on the processing quality of sturgeon meat from the perspective of protein oxidation. The results may provide a theoretical basis for the precise processing of aquatic products. © 2023 Society of Chemical Industry.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

Subject

Nutrition and Dietetics,Agronomy and Crop Science,Food Science,Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3