Tailored Porous Transport Layers for Optimal Oxygen Transport in Water Electrolyzers: Combined Stochastic Reconstruction and Lattice Boltzmann Method

Author:

Liu Jiang1,Li Min23,Yang Yingying1,Schlüter Nicolas1,Mimic Dajan23,Schröder Daniel14ORCID

Affiliation:

1. Institute of Energy and Process Systems Engineering Technische Universität Braunschweig Langer Kamp 19B 38106 Braunschweig Germany

2. Cluster of Excellence SE2A – Sustainable and Energy-Efficient Aviation Technische Universität Braunschweig 38108 Braunschweig Germany

3. Institute of Turbomachinery and Fluid Dynamics Leibniz Universität Hannover An der Universität 1 30823 Garbsen Germany

4. Battery LabFactory Braunschweig (BLB) Technische Universität Braunschweig Langer Kamp 19 38106 Braunschweig Germany

Abstract

AbstractThe porous transport layer (PTL) plays an integral role for the mass transport in polymer electrolyte membrane (PEM) electrolyzers. In this work, a stochastic reconstruction method of titanium felt‐based PTLs is applied and combined with the Lattice Boltzmann method (LBM). The aim is to parametrically investigate the impact of different PTL structures on the transport of oxygen. The structural characteristics of a reconstructed PTL agree well with experimental investigations. Moreover, the impact of PTL porosity, fiber radius, and anisotropy parameter on the structural characteristics of PTLs are analyzed, and their impact on oxygen transport are elucidated by LBM. Eventually, a customized graded PTL is reconstructed, exhibiting almost optimal mass transport performance for the removal of oxygen. The results show that a higher porosity, larger fiber radius, and smaller anisotropy parameter facilitate the formation of oxygen propagation pathways. By tailoring the fiber characteristics and thus optimizing the PTLs, guidelines for the optimal design and manufacturing can be obtained for large‐scale PTLs for electrolyzers.

Funder

China Scholarship Council

Publisher

Wiley

Subject

Physical and Theoretical Chemistry,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3