Wetting Effect Induced Depletion and Adsorption Layers: Diffuse Interface Perspective

Author:

Zhang Haodong12,Zhang Hongmin12,Wang Fei12ORCID,Nestler Britta123

Affiliation:

1. Institute of Applied Materials-Microstructure Modelling and Simulation Karlsruhe Institute of Technology Straße am Forum 7 76131 Karlsruhe Germany

2. Institute of Nanotechnology Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany

3. Institute of Digital Materials Science Karlsruhe University of Applied Sciences Moltkestraße 30 76133 Karlsruhe Germany

Abstract

AbstractWhen a multi‐component fluid contacts arigid solid substrate, the van der Waals interaction between fluids and substrate induces a depletion/adsorption layer depending on the intrinsic wettability of the system. In this study, we investigate the depletion/adsorption behaviors of A−B fluid system. We derive analytical expressions for the equilibrium layer thickness and the equilibrium composition distribution near the solid wall, based on the theories of de Gennes and Cahn. Our derivation is verified through phase‐field simulations, wherein the substrate wettability, A−B interfacial tension, and temperature are systematically varied. Our findings underscore two pivotal mechanisms governing the equilibrium layer thickness. With an increase in the wall free energy, the substrate wettability dominates the layer formation, aligning with de Gennes’ theory. When the interfacial tension increases, or temperature rises, the layer formation is determined by the A−B interactions, obeying Cahn's theory. Additionally, we extend our study to non‐equilibrium systems where the initial composition deviates from the binodal line. Notably, macroscopic depletion/adsorption layers form on the substrate, which are significantly thicker than the equilibrium microscopic layers. This macroscopic layer formation is attributed to the interplay of phase separation and Ostwald ripening. We anticipate that the present finding could deepen our knowledge on the depletion/adsorption behaviors of immiscible fluids.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3